# Dictionary Definition

amenability n : the trait of being cooperative
[syn: amenableness,
cooperativeness]

# User Contributed Dictionary

# Extensive Definition

In mathematics, an amenable
group is a locally
compact topological
group G carrying a kind of averaging operation on bounded
functions that is invariant under left (or
right) translation by group elements. The original definition, in
terms of a finitely additive invariant measure (or mean) on subsets
of G, was introduced by John von
Neumann in 1929 under the German
name "messbar" ("measurable" in English) in response to the
Banach-Tarski paradox. In 1949 Mahlon M. Day introduced the
English translation "amenable", apparently as a pun.

The amenability property has a large number of
equivalent formulations. In the field of analysis,
the definition is in terms of linear functionals. An intuitive way
to understand this version (which can be made precise) is that the
support
of the regular
representation is the whole space of irreducible
representations.

In discrete
group theory, where G has no topological structure, a
simpler definition is used. In this setting, a group is amenable if
one can say what percentage of G any given subset takes up.

If a group has a Følner
sequence then it is automatically amenable.

## Amenability in general

Let G be a locally compact group and L^\infty(G) be the Banach space of all essentially bounded functions G \to \Bbb with respect to the Haar measure.Definition 1. A linear functional on L^\infty(G)
is called a mean if it maps the constant function f(g) = 1 to 1 and
non-negative functions to non-negative numbers.

Definition 2. Let L_g be the left action of g \in
G on f \in L^\infty(G), i.e. (L_g f)(h) = f(g^h). Then, a mean \mu
is said to be left-invariant if \mu(L_g f) = \mu(f) for all g \in G
and f \in L^\infty(G). Similarly, \mu is said to be right-invariant
if \mu(R_g f) = \mu(f), where R_g is the right action (R_g f)(h) =
f(hg).

Definition 3. A locally compact group G is
amenable if there is a left- (or right-)invariant mean on
L^\infty(G).

## Amenability of discrete groups

The definition of amenability is quite a lot
simpler in the case of a discrete
group, i.e. a group with no topological structure.

Definition. A discrete group G is amenable if
there is a measure—a
function that assigns to each subset of G a number from 0 to
1—such that

- The measure is a probability measure: the measure of the whole group G is 1.
- The measure is finitely additive: given finitely many disjoint subsets of G, the measure of the union of the sets is the sum of the measures.
- The measure is left-invariant: given a subset A and an element g of G, the measure of A equals the measure of gA. (gA denotes the set of elements ga for each element a in A. That is, each element of A is translated on the left by g.)

This definition can be summarized thus: G is
amenable if it has a finitely-additive left-invariant probability
measure. Given a subset A of G, the measure can be thought of as
answering the question: what is the probability that a random
element of G is in A?

It is a fact that this definition is equivalent
to the definition in terms of L^\infty(G).

Having a measure \mu on G allows us to define
integration of bounded functions on G. Given a bounded function
f:G\to\mathbf, the integral

- \int_G f\,d\mu

If a group has a left-invariant measure, it
automatically has a bi-invariant one. Given a left-invariant
measure \mu, the function \mu^-(A)=\mu(A^) is a right-invariant
measure. Combining these two gives a bi-invariant measure:

- \nu(A)=\int_\mu(Ag^)d\mu^-.

## Conditions for amenability of a discrete group

The following conditions are equivalent for a
countable discrete group Γ:

- Γ is amenable.
- If Γ acts by isometries on a (separable) Banach space E, leaving a weakly closed convex subset C of the closed unit ball of E* invariant, then Γ has a fixed point in C.
- There is a left invariant norm-continuous functional μ on l∞(Γ) with μ(1) = 1 (this requires the axiom of choice).
- There is a left invariant state μ on any left invariant separable unital C* subalgebra of l∞(Γ).
- There is a set of probability measures μn on Γ such that ||g · μn - μn||1 tends to 0 for each g in Γ (M.M. Day).
- There are unit vectors xn in l2(Γ) such that ||g · xn - xn||2 tends to 0 for each g in Γ (J. Dixmier).
- There are subsets Sn of Γ such that | g · Sn Δ Sn | / |Sn| tends to 0 for each g in Γ (Følner).
- If μ is a symmetric probability measure on Γ with support generating Γ, then convolution by μ defines an operator of norm 1 on l2(Γ) (Kesten).
- If Γ acts by isometries on a (separable) Banach space E and f in l∞(Γ, E*) is a bounded 1-cocycle, i.e. f(gh) = f(g) + g·f(h), then f is a 1-coboundary, i.e. f(g) = g·φ - φ for some φ in E* (B.E. Johnson).
- The von Neumann group algebra of Γ is hyperfinite (A. Connes).

## Examples of amenable groups

- Finite groups are amenable. Use the counting measure with the discrete definition.
- Subgroups of amenable groups are amenable.
- The direct product of two amenable groups is amenable, while the direct product of an infinite family of amenable groups need not be.
- The group of integers is amenable (they have a Følner sequence).
- A group is amenable if all its finitely
generated subgroups are. That is, locally amenable groups are
amenable.
- By the fundamental theorem of finitely generated abelian groups, it follows that abelian groups are amenable.

- A group is amenable if it has an amenable normal
subgroup such that the quotient
is amenable. That is, extensions
of amenable groups by amenable groups are amenable.
- It follows that a group is amenable if it has a finite index amenable subgroup. That is, virtually amenable groups are amenable.
- Furthermore, it follows that all solvable groups are amenable.

- Compact groups are amenable. The Haar measure is an invariant mean (unique taking total measure 1).
- Finitely generated groups of subexponential growth are amenable.

## Non-amenable groups

If a countable discrete group contains a (non-abelian) free subgroup on two generators, then it is not amenable. The converse to this statement is the so-called von Neumann conjecture, which was disproved by Olshanskii in 1980 using his Tarski monsters. Adyan subsequently showed that free Burnside groups are non-amenable: since they are periodic, they cannot contain the free group on two generators. In 2002, Sapir and Olshankii found finitely generated counterexamples: non-amenable finitely presented groups that have periodic normal subgroups of finite index.For linear
groups, however, the von Neumann conjecture is true by the
Tits
alternative: every subgroup of Gl(n,k) with k a field either
has a normal solvable subgroup of finite index (and therefore is
amenable) or contains the free group on two generators. Although
Tits' proof
used algebraic
geometry, Guivarc'h later found an analytic proof based on
Oseledets'
multiplicative ergodic theorem. Analogues of the Tits
alternative have been proved for many other classes of groups, such
as fundamental
groups of 2-dimensional simplicial
complexes of
non-positive curvature.

## See also

## Notes

## References

- F.P. Greenleaf, Invariant Means on Topological Groups and Their Applications, Van Nostrand Reinhold (1969).
- V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer (2002).
- M. Takesaki, Theory of Operator Algebras, Vol. 2 and 3, Springer.
- J. von Neumann, Einige Theorie des Maßes, Fund. Math. 15 (1929), 73−111.